The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis.
نویسندگان
چکیده
Genetic studies have identified a number of components of signal transduction pathways leading to plant disease resistance and the accompanying hypersensitive response (HR) following detection of pathogens by plant resistance (R) genes. In Arabidopsis, the majority of R proteins so far characterized belong to a plant superfamily that have a central nucleotide-binding site and C-terminal leucine-rich-repeats (NB-LRRs). Another much less prevalent class comprises RPW8.1 and RPW8.2, two related proteins that possess a putative N-terminal transmembrane domain and a coiled-coil motif, and confer broad-spectrum resistance to powdery mildew. Here we investigated whether RPW8.1 and RPW8.2 engage known pathway(s) for defence signalling. We show that RPW8.1 and RPW8.2 recruit, in addition to salicylic acid and EDS1, the other NB-LRR gene-signalling components PAD4, EDS5, NPR1 and SGT1b for activation of powdery mildew resistance and HR. In contrast, NDR1, RAR1 and PBS3 that are required for function of certain NB-LRR R genes, and COI1 and EIN2 that operate, respectively, in the jasmonic acid and ethylene signalling pathways, do not contribute to RPW8.1 and RPW8.2-mediated resistance. We further demonstrate that EDR1, a gene encoding a conserved MAPKK kinase, exerts negative regulation on HR cell death and powdery mildew resistance by limiting the transcriptional amplification of RPW8.1 and RPW8.2. Our results suggest that RPW8.1 and RPW8.2 stimulate a conserved basal defence pathway that is negatively regulated by EDR1.
منابع مشابه
Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance.
Here, an approach based on natural genetic variation was adopted to analyse powdery mildew resistance in Arabidopsis thaliana. Accessions resistant to multiple powdery mildew species were crossed with the susceptible Col-0 ecotype and inheritance of resistance was analysed. Histochemical staining was used to visualize archetypal plant defence responses such as callose deposition, hydrogen perox...
متن کاملPutting knowledge of plant disease resistance genes to work.
Plant disease resistance genes trigger defence mechanisms upon recognition of pathogen compatibility factors, which are encoded by avirulence genes. Isolation of the barley powdery mildew resistance gene Mla opens the door to understanding the extensive allelic diversity of this locus. Completion of the Arabidopsis genome sequence enables the analysis of the complete set of R-gene homologues in...
متن کاملMolecular Characterization and Overexpression of VpRPW8s from Vitis pseudoreticulata Enhances Resistance to Phytophthora capsici in Nicotiana benthamiana
RPW8 genes are atypical broad-spectrum genes that provide resistance to powdery mildew, downy mildew, the cauliflower mosaic virus in Arabidopsis thaliana, and powdery mildew in tobacco. They play important roles in basal plant pathogen defense. They also provide insights into a novel disease resistance mechanism. In this study, we report on homologous RPW8 genes in Vitis pseudoreticulata. Five...
متن کاملHomologues of the RPW8 Resistance Protein Are Localized to the Extrahaustorial Membrane that Is Likely Synthesized De Novo.
Upon penetration of the host cell wall, the powdery mildew fungus develops a feeding structure named the haustorium in the invaded host cell. Concomitant with haustorial biogenesis, the extrahaustorial membrane (EHM) is formed to separate the haustorium from the host cell cytoplasm. The Arabidopsis resistance protein RPW8.2 is specifically targeted to the EHM where it activates haustorium-targe...
متن کاملIntraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana.
The RPW8 locus of Arabidopsis thaliana confers broad-spectrum resistance to powdery mildew pathogens. In many A. thaliana accessions, this locus contains two homologous genes, RPW8.1 and RPW8.2. In some susceptible accessions, however, these two genes are replaced by HR4, a homolog of RPW8.1. Here, we show that RPW8.2 from A. lyrata conferred powdery mildew resistance in A. thaliana, suggesting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 42 1 شماره
صفحات -
تاریخ انتشار 2005